
KS3 ‘Stages of Excellence’: Computer Science

 Year 7 Year 8 Year 9

4.Extending

Computational Thinking
• Decomposition:

o Can consistently break down complex problems into
smaller, manageable components and articulate a
clear solution strategy.

o Applies decomposition skills in a range of scenarios,
from programming tasks to analysing real-world
problems.

• Pattern Recognition:
o Identifies and uses patterns effectively to reduce

complexity in problem-solving, recognizing
commonalities between tasks and applying solutions
across different contexts.

• Abstraction:
o Shows understanding of abstraction by removing

unnecessary details and focusing on the critical parts
of a problem.

o Can explain the role of abstraction in computer
science (e.g., in the design of computer systems and
software).

Understanding Algorithms:

• Can explain the importance of algorithms in solving problems
and use them effectively.

• Able to design, trace, and evaluate algorithms, both
independently and collaboratively.

• Can create and modify algorithms using flowcharts,
pseudocode, or similar tools, showing good logical thinking.

Understanding Components:
• Can describe the function and purpose of different computer

hardware components (e.g., CPU, memory, hard drive,
input/output devices) and how they interact in a system.

Networking Knowledge:
• Has a secure understanding of how networks are structured,

including concepts like LANs (Local Area Networks), WANs (Wide
Area Networks), and the internet.

• Can explain how data is transmitted over a network using packets,
including basic concepts such as IP addresses, routers, and protocols
(e.g., HTTP, FTP).

•
Internet Functionality:

• Understands the difference between the internet and the World
Wide Web, and can explain how web pages are accessed using URLs,
domain names, and DNS.

Problem-Solving & Creativity

• Problem-Solving:
o Confidently uses computational thinking to approach new

problems, designing creative and effective solutions.
o Able to evaluate and refine solutions, learning from

mistakes and improving their strategies.
• Collaboration and Independence:

o Works effectively both independently and as part of a team,
contributing ideas and solving technical challenges
collaboratively.

o Demonstrates persistence in tackling challenging tasks,
refining and improving their solutions based on feedback or
testing results.

Binary and Number Systems:

• Can convert between binary, decimal, and hexadecimal number
systems with confidence.

• Understands how computers use binary to represent different types
of data, such as numbers, characters (ASCII), and images (pixel
representation).

Software:

• Can explain the features of system software (e.g., operating systems
like Windows or macOS) and application software (e.g., word
processors or web browsers).

• Can clearly explain the purpose and usage of key types of software

Programming Proficiency:

• Can write more complex programs, using text-based languages like
Python, confidently applying basic programming concepts such as
loops, conditionals, and functions.

• Understands and applies debugging techniques to identify and fix
errors in programs independently.

• Can write programs that use variables, arithmetic operations, and
input/output to solve problems.

• Understands the purpose and structure of functions and can use
them to make code more efficient (e.g., defining and calling custom
functions).

Impact of Technology

• Digital Safety:
o Has a secure understanding of the importance of online

safety, including managing privacy settings, avoiding
phishing, and recognizing threats like malware and
cyberbullying.

o Understands the ethical issues related to data collection,
social media, and the digital footprint, and can discuss how
to protect personal information online.

• Ethical and Social Impact:
o Can discuss the broader social and ethical implications of

computer science, such as automation, AI, and the digital
divide.

o Understands the importance of adhering to laws regarding
intellectual property, data protection (e.g., GDPR), and
other legal considerations related to technology use.

Evaluation:

• Can test solutions to ensure they work as intended and identify
areas for improvement.

Evaluates the efficiency and correctness of solutions (e.g., comparing
different algorithms or program designs for solving a problem).
Understands how to refine and optimize solutions to improve performance
or simplify code.

3.Secure

Computational Thinking

• Decomposition:
Can break down a problem into smaller, manageable tasks.
Understands that large problems can be simplified by tackling
one part at a time.

• Pattern Recognition:
Can identify patterns or similarities in data or problems to
simplify solutions.

• Abstraction:
Can ignore unnecessary details to focus on the important
parts of a problem.

Basic Networking Concepts:
• Can explain what a network is and describe its benefits (e.g., sharing

files, internet access).
• Understands the difference between the internet and the World Wide

Web.
Data Transmission:

• Understands that data is transmitted over networks in the form of
packets.

• Can explain the role of common network devices like routers and
switches.

Software Basics:

Programming Proficiency:

• Can write basic programs, using text-based languages like Python,
applying basic programming concepts such as loops and conditional.

• Understands and applies debugging techniques to identify and fix
errors in programs with occasional guidance.

• Can make use of programs that use variables, arithmetic operations,
and input/output to solve problems.

Impact of Technology

Programming Fundamentals:

• Can write, test, and debug simple programs (typically in block-
based or simple text-based languages like Python).

• Understands basic control structures such as loops (e.g., for or
while loops) and conditionals (e.g., if-else statements).

• Can use variables to store and manipulate data.

• Can differentiate between system software (e.g., operating systems
like Windows or macOS) and application software (e.g., word
processors or web browsers).

• Can describe the purpose of key types of software.
Understanding Binary:

• Can fully explain the concept of binary as the basis of computer systems
(how computers use 1s and 0s to represent data).

• Can convert binary numbers to decimal and vice versa.

• Digital Literacy:
o Understands the importance of online safety, including

issues related to privacy, data protection, and cyberbullying.
• Ethical Use of Technology:

o Can discuss the benefits and risks of technology in society,
such as the impact of social media, the rise of artificial
intelligence, or issues of digital divide.

Data Structures:

• Has a strong understanding of arrays (or lists) and can use them to
store and manipulate collections of data within programs

Data Types and Manipulation:
• Can work with different data types (integers, floats, strings,

booleans) in a program, ensuring appropriate usage in various
contexts.

2.Developing

Understanding Algorithms:

• Can explain what an algorithm is and understand how
algorithms can be used for problem-solving.

• Able to follow simple algorithms like flowcharts or
pseudocode.

• Can create basic sequences of instructions (e.g., in block-
based programming environments like Scratch).

Basic Programming:

• Can write simple programs with guidance, using visual or
block-based programming languages (e.g., Scratch or Blockly).

• Understands the very basics of control structures such as
sequential instructions (one after the other).

• Can use simple instructions like "move forward" or "turn
right" in basic programming tasks.

computer Components:
• Can identify basic components of a computer system, such as

the CPU, memory (RAM), storage (hard drives/SSD), and
input/output devices.

• Understands the role of each component in processing and
storing data.

Computational Thinking

• Decomposition:
o Needs support to break down a problem into smaller

parts.
o Understands the idea that problems can be simplified

but requires help in applying it.
• Pattern Recognition:

o Can identify basic patterns in simple data or problems
when prompted.

o Recognizes when something repeats in a process but
struggles to use this observation to simplify tasks
independently.

• Abstraction:

Networks

• Can describe the role and importance of key network security
measures, such as firewalls and encryption.

• Has an understanding that computers can be connected in networks
to share information and can explain main features of how this take
place.

• Can explain the term "internet" and that it allows access to websites
and can explain how data is transferred over a network with some
guidance.

Data Transmission:

• Can explain that data can be sent across a network with some
technical details (e.g., packet switching or IP addresses).

collaboration and Independence

• Working with Others:
o Participates in group work with guidance, sharing ideas and

contributing to team activities with support.
o Often relies on teacher or peer feedback to complete tasks

and requires direction to work through challenge

Understanding Binary:

• Can explain the concept of binary as the basis of computer systems (how
computers use 1s and 0s to represent data).

• Can convert simple binary numbers to decimal and vice versa.

Basic Computer Components:
• Can name parts of a computer (e.g., monitor, keyboard, CPU) and

has an understanding of their function.
• Understands that software is the programs that run on a computer

and can explain the difference between types of software (e.g.,
applications vs. operating systems) with some guidance.

Programming Proficiency:

• Can write basic programs, using text-based languages like Python,
applying basic programming concepts such as loops and conditional.

• Needs help debugging techniques to identify and fix errors in
programs with guidance.

• Can understand use of programs that use variables, arithmetic
operations, and input/output to solve problems with some guidance

Data Structures:
• Has a basic understanding of arrays (or lists) and can use them to

store and manipulate collections of data within programs

Data Types:

• Is aware that different types of data exist (e.g., numbers, text) and
with examples can understand when and how to use them in
programs.

Evaluation:

• Can test solutions to ensure they work with some guidance.
• Can identify areas of improvement but may not know exactly how

until guided

o Understands that some details are unnecessary for
solving a problem but finds it difficult to identify what
to ignore on their own.

1.Novice

Understanding Algorithms:

• Recognizes that an algorithm is a set of instructions to solve a
problem.

• Can follow a simple sequence of instructions provided to them
(e.g., a step-by-step process for making a sandwich or
navigating a maze).

• Requires support to create simple algorithms (e.g., in block-
based programming environments like Scratch).

Approaching Problems:

• With support, can follow a structured approach to solve
simple problems, such as following a step-by-step plan or
using trial and error.

• Requires guidance to come up with solutions or alternative
approaches to problems.

Creativity in Computing:

• Can complete guided activities where creativity is encouraged
(e.g., creating a simple game in Scratch) but needs assistance
to explore or create more independently.

Data Types:
• Understands basic data types like integers, floats (decimals),

and strings (text).
• Can explain the difference between these types and when to

use them.

Understanding Binary:

• Knows that computers use 1s and 0s (binary) to represent data but may
not fully understand how this works.

• Needs help converting very simple binary numbers to decimal (e.g., 4-bit
numbers).

Basic Computer Components:
• Can name some parts of a computer (e.g., monitor, keyboard, CPU)

and has a basic understanding of their function.
• Understands that software is the programs that run on a computer

but may not yet be clear on the difference between types of
software (e.g., applications vs. operating systems).

System Usage:

• Can use basic system software (e.g., opening and saving files, using
simple applications) with support.

• Requires guidance to understand the function of common hardware
components like RAM or storage.

Understanding Networks:

• Has a basic understanding that computers can be connected in
networks to share information.

• Knows the term "internet" and that it allows access to websites but
may not understand how data is transferred over a network.

Data Transmission:

• Can explain that data can be sent across a network but requires help
understanding the details (e.g., packet switching or IP addresses).

collaboration and Independence

• Working with Others:
o Participates in group work with guidance, sharing ideas and

contributing to team activities with support.
o Often relies on teacher or peer feedback to complete tasks

and requires direction to work through challenge

Data Types:

• Has some awareness that different types of data exist (e.g., numbers,
text) but requires guidance in understanding when and how to use them
in programs.

online Safety Awareness:

• Knows basic online safety rules (e.g., don't share passwords or
personal information) and can explain why they are important.

• Needs guidance to understand more complex issues like
cyberbullying or data privacy.

Ethical Use of Technology:
• Understands that there are rules for using technology responsibly

(e.g., respecting copyright or using social media wisely) but may
need support to discuss the wider implications.

